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Abstract. The primary goal of the research described in this final report was to establish a 
methodology for using genetic algorithms to evolve coefficient sets describing inverse transforms 
and matched forward/inverse transform pairs that consistently outperform wavelets for image 
compression and reconstruction applications under conditions subject to quantization error. This 
report describes each of the following outcomes: 
 
1. Coefficients trained on a single representative image consistently outperformed wavelets 

when subsequently tested against other images. 
2. The performance of transforms evolved against representative subimages approximated that 

of transforms trained on the entire parent image(s), and was consistently better than the 
performance of the corresponding wavelet. 

3. This research investigated the relationship between a subimage’s representativeness and the 
performance of coefficients evolved against that subimage during subsequent testing. 

4. This research extended the genetic algorithm to evolve coefficient sets describing matched 
forward and inverse transform pairs that further reduced mean squared error in quantized, 
reconstructed images, and identified a Pareto optimal front representing the tradeoff between 
compressed file size (FS) and maximum error reduction. 

5. Attempts to use a genetic algorithm to evolve sets of coefficients that outperformed the 
standard 9/7 wavelet used by Joint Photographic Experts Group (JPEG) 2000 for image 
reconstruction were unsuccessful. 

 
Outcomes 1-4 strongly support continued research into this exciting area.
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1. SUMMARY 
Wavelets have become the standard methodology for high-fidelity signal compression and 
reconstruction. Unfortunately, the performance of wavelets degrades under conditions in which 
the source signal is subjected to a significant amount of quantization error and/or noise. The 
primary goal of this research was to establish a methodology for using genetic algorithms (GAs) 
to evolve coefficient sets describing inverse transforms and matched forward/inverse transform 
pairs that consistently outperform wavelets for image compression and reconstruction 
applications under conditions subject to quantization error.  
 
This report summarizes the results of research carried out by undergraduate students Brendan 
Babb, Steven Becke, Heather Koyuk, Earl Lamson III, and Christopher Wedge at the University 
of Alaska Anchorage (UAA) during the spring 2005 semester.  This research was performed 
under the supervision of Dr. Frank Moore, the principal investigator (PI), who is an assistant 
professor of computer science in the UAA Mathematical Sciences Department. Funding for Dr. 
Moore’s students was provided by the Research Foundation of the State University of New York, 
under contract to the Air Force Research Laboratory (AFRL). 
 
Five primary subtasks were identified for this research. The goal of subtask 1 was to determine 
whether an inverse transform evolved using a single representative image also exhibited superior 
performance (in comparison to a selected standard wavelet) when subsequently tested against 
images other than the training image. The results summarized in section 3.1 of this report clearly 
substantiate the generalization properties of the inverse transforms evolved during this research. 
In particular, coefficients trained on a single representative image consistently outperformed 
wavelets when subsequently tested against all other images in the test set. 
 
The goal of subtask 2 was to determine whether one or more representative subimages could be 
used to evolve an inverse transform whose performance, as measured by mean squared error 
(MSE) in the reconstructed image, consistently improved upon that of the corresponding wavelet 
inverse transform. The results summarized in section 3.2 clearly demonstrate that coefficient sets 
describing inverse transforms evolved against a training set of representative subimages 
consistently outperformed the corresponding wavelet. Further, these transforms performed 
approximately as well as transforms evolved against the entire parent image or images. By greatly 
reducing the amount of computation necessary to evaluate the fitness of each evolved transform, 
the use of subimages (rather than larger images) in the training population accelerated the 
evolutionary process by two orders of magnitude. 
 
The use of subimages to evolve coefficients raised an interesting issue: what causal relationship 
exists between the representativeness of the subimages selected for training and subsequent 
performance of the evolved transforms on larger images?  The goal of task 3 was to investigate 
this relationship. This research conclusively proved that use of more representative subimages 
during training will generally result in coefficients that exhibit better performance when 
reconstructing larger images. Further, these results suggest that factors such as the clarity and 
texture of the subimages play an important role: in particular, clear subimages with higher energy 
content consistently produce better evolved inverse transforms than blurry, dull subimages. 
 
The goal of task 4 was to evolve coefficient sets describing matched forward and inverse 
transform pairs that further reduced MSE in quantized, reconstructed images. The earliest 
attempts to solve this problem revealed an interesting phenomenon: the GA automatically learned 
to boost each coefficient from the forward transform by a factor that was sufficiently large 
enough to offset much of the destructive effect of subsequent quantization. This phenomenon 
greatly improved the quality of the resulting reconstructed images, but at the cost of much 
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degraded file compression capability. An effective solution to this problem necessitated the 
identification of the pareto-optimal front representing the tradeoff between compressed FS and 
maximum MSE reduction. On one extreme of this front, the GA evolved coefficient sets that 
produced images of equal fidelity as those produced by the wavelet transform, but with much 
smaller compressed FS. As the FS constraint was relaxed, the GA evolved coefficients capable of 
much higher fidelity image compression and reconstruction. The result of subtask 4 was to 
demonstrate that the simultaneous evolution of matched forward and inverse transform pairs 
produced much lower MSE values than either the standard wavelet forward and inverse transform 
pairs or the combination of a wavelet forward transform and an evolved inverse transform. 
 
The goal of subtask 5 was to incorporate a GA into a widely used wavelet analysis package to 
evolve sets of coefficients for forward and inverse transforms that outperformed the standard 9/7 
wavelet used by JPEG 2000 for image compression and reconstruction. As with the first four 
subtasks, the GA seeded the initial population with randomly perturbed copies of the standard 
wavelet (in this case, the 9/7 wavelet), and used the GA in an attempt to evolve new coefficients 
for transforms having an identical structure as the wavelet. To date, none of the attempts to 
produce a GA capable of consistently evolving such coefficients have been successful. It is 
possible that, by incorporating the subimaging methodology of subtasks 2 and 3 and using 
significantly larger scale runs, the GA will ultimately be able to improve upon the compression 
and reconstruction capabilities of the JPEG 2000 standard. 
 
The outcomes of subtasks 1, 2, 3, and (especially) 4 strongly support continued research into this 
exciting area. Integration of the subimage training methodology from subtask 2 with the 
simultaneous evolution of forward and inverse transform pairs from subtask 4 should allow us to 
make considerably more rapid progress toward the goal of revolutionizing the field of image 
compression and reconstruction under conditions subject to large quantization error. Additional 
research into the issue of subimage representativeness raised during subtask 3, and its impact 
upon the quality of reconstructed images, may allow us to identify techniques for identifying, 
highlighting, and extracting highly distinctive subimages (e.g., a tank moving across the desert) 
within larger images. Furthermore, the identification of the properties of subimages that make 
them more or less suitable for GA training will allow us to automatically enhance the precision of 
the subimage-based approach. 
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2. INTRODUCTION 
Wavelets have become the standard methodology for high-fidelity signal compression and 
reconstruction. For example, the JPEG 2000 image coding system is based upon wavelet 
technology, and is used for applications ranging from medical imaging to portable digital 
cameras. Unfortunately, the performance of wavelets degrades under conditions in which the 
source signal is subjected to a significant amount of quantization error and/or noise. State-of-the-
art wavelet-based signal compression techniques, thus, leave considerable room for improvement. 
 
The payoff from improving upon standard wavelet technology could be extraordinary. Better 
medical images would mean that doctors could more consistently and more accurately identify 
cancer early in its development. Better satellite images would result in more accurate 
identification and tracking of objects of interest. Better audio compression and reconstruction 
techniques would mean that sounds produced by telephone receivers, CD and DVD players, and 
other devices would be more realistic and more understandable. Images downloaded from the 
internet would be smaller, more quickly transmitted, and/or more accurate. The quality of digital 
photography would improve. These are but a few of the many endeavors that would benefit from 
improved signal and image processing technologies. 
 
To date, there have been and continue to be many attempts to identify new wavelet transforms 
and inverse transforms that improve upon the state of the art for a wide variety of application 
areas. However, it is not known whether any of the researchers involved in these attempts has 
considered the possibility that the use of nontraditional transforms–inspired by wavelets but not 
necessarily bound by their precise mathematical properties–could actually result in improved 
signal and image reconstruction. Hence, there is virtually no literature directly related to the 
proposed project, apart from two final reports produced by the PI summarizing the results of his 
prior work in collaboration with the Air Force. 
 
Previous research conducted by the PI established a methodology for using a GA to evolve 
nontraditional inverse transforms for signal reconstruction applications. The evolved inverse 
transforms consistently outperformed wavelets: in particular, these transforms reduced the MSE 
observed in specific classes of reconstructed one-dimensional (1-D) signals by a factor of 10 or 
more, in comparison to the standard (and widely used) Daubechies-4 (Daub4) inverse wavelet 
transform. Furthermore, this research demonstrated that a reduction in MSE was also possible for 
multidimensional signals, such as two-dimensional (2-D) images. These results laid the 
foundation for extensive additional research in this exciting new area. 
 
Previous research was accomplished through the development of two specialized GA packages. 
The first package was designed to rapidly evolve a novel inverse transform for 1-D signals, such 
as sine waves or ramp functions. This package can efficiently process populations of thousands of 
candidate solutions over thousands of generations. The second GA package was designed to 
optimize an inverse transform for reconstructing 2-D images. Together, these two GAs provided a 
solid foundation upon which the software developed for the proposed research could be built. 
 
The PI’s prior research was restricted to the evolution of coefficients for inverse transforms. Prior 
to this investigation, no research had been conducted to determine whether the coefficients for a 
forward wavelet transform could be used as a starting point for a evolving a forward transform 
that reduces MSE due to quantization or noise. Likewise, no research had attempted to evolve 
matched forward and inverse transform pairs; such matched transforms may result in even greater 
error reduction than is possible from a single evolved transform. Finally, it was not known 
whether a GA could evolve optimized transforms whose structure and composition may radically 
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differ from that of any wavelet. The potential for high payoff strongly encourages pursuit of 
additional research in this critical technology area. 
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3 RESULTS AND DISCUSSION 
There were five key questions to be answered during this project: 
1. Could the coefficient sets trained on a single representative image perform consistently well 

when subsequently tested against other images? 
2. How will the performance (in terms of MSE reduction) of transforms evolved against 

representative subimages compare to that of transforms trained on the entire parent image(s)? 
3. What happens when a nonrepresentative subimage is used to evolve coefficients? What is the 

relationship between the representativeness of subimages used for training versus the 
effectiveness of the resulting coefficients when tested against the parent image or other 
images? Is it possible to evolve an inverse transform that is capable of highlighting each 
occurrence of a nonrepresentative subimage in a larger image? 

4. Could the GA be modified to evolve coefficient sets describing matched forward and inverse 
transform pairs that further reduced MSE in quantized, reconstructed images? Forward 
transforms tend to compensate for compression error by exaggerating values from the 
original signal. Will it be possible to design the GA in a manner that allows the user to 
specify the maximum compressed FS produced by the forward transform?  

5. Can the methodology established by this research identify new transforms to replace wavelets 
for a widely used application, such as the standard 9/7 wavelet used by JPEG 2000 for image 
reconstruction? 

Each of these questions is directly addressed in the following subsections. 
 
3.1 SUBTASK 1: Generalization Properties of Evolved Coefficients 
Prior research conducted by the PI established two key properties of evolved inverse transforms: 
 
• A GA is capable of evolving an inverse transform that reduces the MSE observed in 

reconstructed images previously subjected to quantization error. 
• An inverse transform evolved against a training population consisting of several members of 

a given class of images is capable of high-quality reconstruction of test images subsequently 
drawn from the same class. In particular, the percentage reduction in MSE for images from 
the training and test sets were approximately equal. 

 
The first subtask addressed by this research was to determine whether an inverse transform 
evolved against a single representative training image was capable of similar MSE reductions 
when subsequently tested against other images. The results of this subtask are summarized in 
Table 1. Each run evolved a population of M = 500 candidate solutions for G = 200 generations; 
these control parameters proved to be sufficient for the purposes of this subtask. 
 
These results clearly show that each of the coefficient sets evolved using a single image from the 
training set outperforms the standard Daub4 wavelet, when tested against any other image from 
this set. Thus, all of the results from subtask 1 underscore the outstanding generalization 
capabilities of inverse transforms evolved against selected single images. 
 
Brendan Babb and Steven Becke performed the data collection necessary to complete subtask 1. 
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Table 1. Generalization Properties of Inverse Transforms Evolved Against a Single Image 
 

a) Wavelet:  Daub4 
Training Image: fruits 
Quantization:  64 

 

 Test 
Image 

MSE 
(using 
Daub4) 

MSE 
(evolved) 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

airplane 112.4558 107.98 96.01995 3.980052607
barb 307.6155 295.22 95.97046 4.029543375
fruits 115.8036 110.51 95.42881 4.57118777
goldhill 135.7847 129.09 95.06962 4.930378754
park 168.9597 162.35 96.088 3.91199795
susie 132.5596 127.41 96.11526 3.884743165
     
  Averages 95.78202 4.217983937

 
b)  Wavelet:  Daub4 
 Training Image: couple 

Quantization:  64 
 

 Test 
Image 

MSE 
(using 
Daub4) 

MSE 
(evolved) 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

baboon 279.5612 262.56 93.91861 6.081387546
couple 155.9632 145 92.97065 7.029350513
fruits 115.8036 107.77 93.06274 6.937262745
lenna 177.5059 163.53 92.12652 7.873484769
peppers 121.2649 116.15 95.78204 4.217955897
zelda 134.5674 125.71 93.41787 6.582129104
     
  Averages 93.5464 6.453595096

 
c) Wavelet:  Daub4 

Training Image: barb 
 Quantization: 32 
 

 Test 
Image 

MSE 
(using 
Daub4) 

MSE 
(evolved) 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

airplane 43.07 41.19 95.63501 4.36498723
barb 96.89 92.91 95.89225 4.107751058
couple 59.67 56.81 95.20697 4.793028322
goldhill 55.81 53.5 95.86096 4.139043182
park 70.33 67.54 96.03299 3.967012655
susie 53.38 51.6 96.66542 3.334582241
     
  Averages 95.88227 4.117734115
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d)  Wavelet:  Daub4 
 Training Image: boat 
 Quantization: 32 
 

 Test 
Image 

MSE 
(using 
Daub4) 

MSE 
(evolved) 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

baboon 113.77 109.67 96.39624 3.603761976
boat 52.52 49.92 95.0495 4.95049505
fruits 41.52 39.72 95.66474 4.335260116
lenna 63.55 59.71 93.95751 6.042486231
peppers 44.15 43.32 98.12005 1.8799547
zelda 34.52 32.83 95.10429 4.89571263
     
  Averages 95.71539 4.284611784

 
e)  Wavelet:  2/6 (TS) 
 Training Image: goldhill 
 Quantization: 32 
 

 Test 
Image 

MSE 
(using 2/6) 

MSE 
(evolved) 

MSE as 
% of 2/6 
MSE 

Percentage 
Improvement 
of MSE 

airplane 40.72 39.89 97.96169 2.03831041
barb 93.73 92.89 99.10381 0.89619119
fruits 42.38 40.94 96.60217 3.39782916
goldhill 55.69 52.67 94.57712 5.42287664
park 68.49 66.78 97.50329 2.49671485
susie 54.13 52.22 96.47146 3.5285424
     
  Averages 97.03659 2.96341078

 
f)  Wavelet:  2/6 (TS) 
 Training Image: park 
 Quantization: 32 
 

 Test 
Image 

MSE 
(using 2/6) 

MSE 
(evolved) 

MSE as 
% of 2/6 
MSE 

Percentage 
Improvement 
of MSE 

baboon 113 109.78 97.15044 2.84955752
couple 59.91 56.63 94.52512 5.47487899
park 68.49 65.52 95.6636 4.33639947
lenna 64.18 60.14 93.7052 6.29479589
peppers 45.02 42.54 94.49134 5.50866282
zelda 35.38 32.47 91.77501 8.22498587
     
  Averages 94.55179 5.44821343

 



8 

g) Wavelet:  2/6 (TS) 
 Training Image: susie 
 Quantization: 64 
 

 Test 
Image 

MSE 
(using 2/6) 

MSE 
(evolved) 

MSE as 
% of 2/6 
MSE 

Percentage 
Improvement 
of MSE 

airplane 106.56 97.31 91.31944 8.68055556
barb 310 286.66 92.47097 7.52903226
couple 158.58 142.31 89.74019 10.2598058
goldhill 140.44 123.76 88.12304 11.8769581
park 167.17 151.61 90.69211 9.30789017
susie 133.23 118.91 89.25167 10.74833
     
  Averages 90.26624 9.73376197

 
h) Wavelet:  2/6 (TS) 
 Training Image: peppers 
 Quantization: 64 
 

 Test 
Image 

MSE 
(using 2/6) 

MSE 
(evolved) 

MSE as 
% of 2/6 
MSE 

Percentage 
Improvement 
of MSE 

baboon 277.97 261.81 94.18642 5.813577
boat 161.28 148.36 91.98909 8.0109127
fruits 117.17 107.53 91.77264 8.22736195
lenna 178.6 159.96 89.56327 10.4367301
peppers 124.52 112.27 90.16222 9.83777706
zelda 138.76 124.59 89.78812 10.2118766
     
  Averages 91.24363 8.75637258



9 

3.2 SUBTASK 2: Evolving Inverse Transform Coefficients Using Subimages 
During the summer of 2004, the PI showed that a GA can be used to generate inverse transform 
coefficients which outperform standard wavelet inverse transforms for image reconstruction 
under conditions subject to quantization error. Unfortunately, computation time was prohibitive, 
taking as much as 46 hours to complete a single evolution run. The purpose of subtask 2 was to 
establish a methodology for evolving optimized inverse transform coefficients using a training 
population consisting of representative subimages. In addition, considerable effort was invested 
into improving the overall quality of the GA/wavelet software package. 
 
Christopher Wedge completed subtask 2. 
 
3.2.1 Representative Subimages 
Subtask 2 began with the problem of choosing representative subimages for training. This process 
seemed to be highly subjective. There were no criteria listed in previous results that could be used 
to determine whether a given image was representative of the parent image. The approach 
adopted for subtask 2 was to use subimages that were duplicates of the original, but were 
substantially reduced in size. 
 
A total of 63 tests were performed. For the first 60 tests, the GA used a single 32- by 32-pixel 
subimage (LennaMini.bmp, MonetWaterLilliesMini.bmp, BarbMini.bmp, and GoldhillMini.bmp, 
each) to evolve optimized inverse transform coefficients. The final three tests used all four of 
these subimages.  
 
Each of the 60 single-subimage tests were repeated 5 times with quantization levels of 32 and 64, 
for a total of 10 training runs on each individual image. The final 3 tests were run once each with 
quantization levels of 32 and 64, for a total of 2 training runs per test. Each training run used 
values of (population size) M = 5,000, and (number of generations G = 2,500. (Note that M is 10 
times and G is 5 times those used in the 46-hour runs completed by the PI during the previous 
investigation.) 
 
Multiresolution (MR) analysis was neglected for time reasons (exploring MR levels of 2 and 3 
would double and triple the time to run, respectively, and would triple the number of tests) and 
because it was thought that any change in MSE would likely be exacerbated by using different 
MR values. That is, any improvement with MR = 1 would still be present, if not amplified, with 
higher values. Threshold was similarly ignored for time reasons, and set to 0. Quantization tends 
to have a bigger effect on MSE values unless the threshold is set exceptionally high. 
 
In each run, the initial coefficients used were taken from the Daub4 wavelet, for both time 
reasons, and because the original research also focused on the Daub4 wavelet. 
 
The results of these tests are represented by Tables 2 and 3. On average, the training runs using a 
single subimage were approximately 50 times faster than the corresponding runs performed on 
the entire parent image. In every instance, the evolved transform coefficients outperformed the 
Daub4 wavelet when reconstructing the original full-sized parent image. Further, the evolved 
transforms outperformed the Daub4 wavelet when reconstructing other full-sized images (e.g., a 
transform evolved on the miniature version of lenna.bmp also outperformed Daub4 on barb.bmp, 
goldhill.bmp, and MonetWaterLillies.bmp) in all tests. Mean MSE reduction over Daub4 wavelet 
on lenna.bmp was 2.41 percent and 8.32 percent with quantization of 32 and 64, respectively. 
Mean MSE reduction on barb.bmp was 2.60 percent and 5.67 percent with quantization of 32 and 
64, respectively. Mean MSE reduction on MonetWaterLillies.bmp was 3.67 percent and 5.55 
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percent with quantization of 32, and 64, respectively. Mean MSE reduction on goldhill.bmp was 
2.45 percent and 8.33 percent with quantization of 32 and 64, respectively. 
 

Table 2. Generalization Properties of Coefficients Evolved Using Subimages 
(Q = quantization) 

 
Trained 
Image Q Evolution Time 

Performance 
vs. Lenna 

Performance 
vs. Barb 

Performance 
vs. Monet 

Performance 
vs. Goldhill 

  Mean St Dev 
Mean 
MSE 

St 
Dev 

Mean 
MSE 

St 
Dev 

Mean 
MSE 

St 
Dev 

Mean 
MSE 

St 
Dev 

            
Lenna Mini 32 1:01:38 0.0007 62.36 0.171 94.50 0.119 78.69 0.143 54.55 0.138 

 64 1:02:33 0.0003 163.56 0.426 291.54 0.360 241.26 0.444 125.66 0.313 
Barb Mini 32 1:02:02 0.0005 62.49 0.633 94.18 0.399 78.15 0.402 54.38 0.392 

 64 1:01:26 0.0008 164.82 0.324 289.27 0.249 242.36 0.437 125.41 0.364 
Goldhill 

Mini 32 1:01:05 0.0008 62.73 0.277 95.73 0.235 78.96 0.263 55.61 0.208 
 64 1:01:37 0.0005 162.87 0.511 291.10 0.436 241.84 0.565 124.92 0.377 

Monet Mini 32 1:01:35 0.0006 60.47 0.229 93.06 0.190 77.70 0.218 53.25 0.131 
 64 1:01:47 0.0005 159.70 0.493 288.80 1.578 242.50 0.370 121.89 0.258 

All Singles 32 1:01:35 0.0006 62.01 0.985 94.37 1.007 78.38 0.558 54.45 0.886 
 64 1:01:51 0.0006 162.74 1.983 290.17 1.426 241.99 0.654 124.47 1.581 

DAUB4 32 N/A N/A 63.55 N/A 96.89 N/A 81.36 N/A 55.81 N/A 
 64 N/A N/A 177.51 N/A 307.62 N/A 256.21 N/A 135.78 N/A 
            

The Four 
Minis 32 4:13:27 N/A 60.48 N/A 93.13 N/A 77.14 N/A 53.33 N/A 

 64 4:07:33 N/A 160.89 N/A 287.42 N/A 239.82 N/A 122.84 N/A 
 
 

Table 3. MSE Reduction of Coefficients Evolved Using Subimages 
(Relative to the Daub4 Wavelet) 

 
Trained 
Image Quantization Mean MSE Reduction Over Daub4 

  vs. Lenna vs. Barb vs. Monet vs. Goldhill 
      
Lenna Mini 32 1.865531% 2.465221% 3.276650% 2.267041%
 64 7.855515% 5.226341% 5.834097% 7.456592%
Barb Mini 32 1.655071% 2.789749% 3.276650% 2.578624%
 64 7.145221% 5.964889% 5.834097% 7.640751%
Goldhill Mini 32 1.281025% 1.189940% 3.941018% 0.370489%
 64 8.246600% 5.369706% 5.406229% 7.998091%
Monet Mini 32 4.835340% 3.954606% 4.497169% 4.594401%
 64 10.034279% 6.117590% 5.349971% 10.231439%
All Singles 32 2.409242% 2.599879% 3.666830% 2.452639%
 64 8.320404% 5.669631% 5.549295% 8.331718%
      
The Four 
Minis 32 4.822056% 3.872319% 5.183125% 4.451723%
 64 9.362846% 6.566303% 6.397766% 9.533019%
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As expected, the runs which trained on all four miniature images generally outperformed the 
single-image runs. However, additional testing will be necessary to conclusively prove the 
benefits of using multiple subimages to evolve inverse transform coefficients. 
 
Still more testing should be done with varying levels of threshold, MR analysis, differing base 
wavelets, multiple image evolution, etc. Nevertheless, subtask 2 demonstrated that there is 
performance to be gained, in terms of computation time and MSE reduction, by genetically 
evolving wavelet transform coefficients on representative subimages (in this case, miniature 
versions of the original image).  
 
3.2.2 Nonrepresentative Subimages 
An interesting phenomenon noticed by Tinsley and Kettle was that transform coefficients trained 
on a nonrepresentative subimage performed better than the Daub4 wavelet on that subimage, but 
worse than the Daub4 wavelet on the entire parent image. It stood to reason that coefficients 
evolved on nonrepresentative subimages might feasibly be used to efficiently search an image for 
an instance of particular subimage, effectively highlighting the subimage and subduing the 
remainder of the parent image. 
 
Eighteen tests were run by co-evolving a nonrepresentative subimage (in each case, the subimage 
was LennaEye.bmp) against the parent image (in each case, the super image was lenna.bmp) and 
using the GA to attempt to simultaneously maximize the MSE of the reconstructed parent image 
and minimize the MSE of the reconstructed subimage.  
 
The runs were broken down into three categories, based on weighting these two fitness criteria. 
The three categories, in terms of subimage weight to parent image weight were: 1 to 1, 2 to 1, and 
1 to 2.  The six runs in each of the three categories consisted of tests of every combination with 
quantization of 0, 32, and 64, and threshold of 0 and 16. MR levels were kept at 1, and the base 
wavelet used was again Daub4. 
 
Since the co-evolution involved transforming both the 32- by 32-pixel subimage and the 512- by 
512-pixel parent image, M and G were chosen to be 500 and 200, respectively. Even with such 
small run parameters, the mean runtime was 4 hours, 2 minutes, 58 seconds. 
 
Table 4 tabulates the results of these tests. Lenna.bmp was used as the parent image and Lenna’s 
eyeball was used as the subimage. Evolved transforms were then iteratively (25 and 50 times) 
applied to the parent image to determine if the subimage was being highlighted. Within the 
iterative transform application loop, various methods were attempted. One approach was to 
simply apply the forward transform, quantization, and inverse transform for the desired number 
of iterations. However, it was found that if a quantization value above 0 was used, then iterative 
applications produced no effect after the first. It seems the error introduced by applying the 
transform more than once was being completely offset after quantization, and that the residual 
transform was subsequently able to perform lossless compression in the presence of the 
quantization. Another approach was to transform only the Y values, leaving U and V alone. Yet 
another involved repeatedly applying the forward transforms, then quantizing, and finally 
applying the same number of reverse transforms.   
 
Each approach was followed by the user judging the resulting image to determine if the subimage 
was effectively highlighted. This is certainly not a quantitative process, and relies entirely on the 
user’s opinion, but since the goal was to produce an image from which humans can easily 
distinguish a desired subimage, it was unavoidable. As a result, there is a lot of subjectivity as to 
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whether or not a subimage has been effectively highlighted. However, there can be no doubt that 
the evolved transforms did not produce anything near the desired effect in these tests. 
 
Often the application of the Daub4 base transform to both the subimage and parent image 
produced MSE values which were substantially higher on the subimage than on the parent image. 
While the GA did start to produce better transforms, the low values of M and G did not allow for 
much time for evolution to work its magic. Further, it is speculated that perhaps due to the 
relatively limited search space of the GA, the evolved coefficients are simply too close to the 
mathematically ideal wavelets to solve this problem more effectively. That is, the initial 
transforms produce positive results universally, and to see the large disparity needed between 
subimage and parent image MSE values to highlight a subimage, the search space needs to be 
broadened. Unfortunately, such an algorithm would have to search far more to produce good 
results, which necessitates far higher values of M and G, naturally costing far more time and 
computing power to run. 
 

Table 4. Results of Attempting to Evolve Inverse Transforms that Perform Well Only on 
Selected Subimages 

 

Q Threshold 

Fitness 
Weights 
(sub vs. 
super) Run Time MSE on Sub 

MSE on 
Super D4 on Sub D4 on Super 

        
0 0 1 to 1 4:02:53 0.547851563 0.67231369 0.737630208 0.706765493 
0 16 1 to 1 4:02:21 31.45572917 26.02457937 33.53515625 18.37425359 

32 0 1 to 1 3:59:53 125.1875 99.44009781 107.4007161 63.54538091 
32 16 1 to 1 4:08:27 122.2522786 97.34475835 107.4007161 63.54538091 
64 0 1 to 1 4:00:50 284.7936198 250.6794001 256.733724 177.5058975 
64 16 1 to 1 4:00:30 280.4238281 243.8678487 256.733724 177.5058975 
0 16 2 to 1 4:02:48 31.81575521 17.16363017 33.53515625 18.37425359 

32 0 2 to 1 4:03:03 110.9404297 76.9559199 107.4007161 63.54538091 
32 16 2 to 1 4:03:29 109.1940104 75.45477931 107.4007161 63.54538091 
0 0 1 to 2 4:01:39 0.688802083 0.76631546 0.737630208 0.706765493 
0 16 1 to 2 4:02:22 31.81575521 17.16363017 33.53515625 18.37425359 

32 0 1 to 2 4:02:08 143.9163411 129.7384529 107.4007161 63.54538091 
64 0 1 to 2 4:01:03 330.9960938 318.8694585 256.733724 177.5058975 
        
 Average Run Time 4:02:25     
 StDev  0.001466     

 
3.2.3 Software Enhancements 
Major additions and bug fixes are listed. Minor changes, fixes (of which there are a great many) 
are not. 
 
• Separated transform evolution and application: Before they were one process, now they are 

individual, unrelated processes. 
• Redesigned how transform coefficients are stored: They are now persistent. Before, only the 

inverse transform coefficients were stored, now both forward and inverse are. This feature is 
nice for extending the subimage training software to simultaneously evolve forward and 
inverse transform coefficients. This modification required sweeping changes to much of the 
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previous code base, including most of the methods in GAWavelet.cpp and 
WaveletSettings.cpp. 

• Added the ability to save transform coefficients to a file: Previously, the user had to enter 
debug mode to harvest the coefficients. 

• Wrote a small program to read the coefficients from a saved transform file. 
• Added the ability to load transform coefficients from a previously saved file: This technique 

allows for much easier test result reproduction and is a logical analog to the save feature. 
Also, by loading previously evolved coefficients, the user can then further evolve them in a 
new run. 

• Added a separate GA which co-evolves a subimage with its parent image, trying to maximize 
MSE of transform application to the parent while minimizing the MSE of application to the 
subimage. 

• Added a search image feature. As yet, the search image logic (which has changed frequently 
over the course of testing) has yet to accomplish the desired task. It is still a work in progress. 

• Fixed a serious bug in which the MSE value given on any transform applied after the first 
was incorrect. 

 
3.2.4 Recommended Future Software Modifications 
• Debugging: There are still known bugs present in the program. These include out of memory 

errors when the user manually types values into the wavelet settings window. When opening, 
then saving bitmap files, two bytes are appended, and the internal file structure is vastly 
changed. There are also likely undiscovered bugs lurking about. 

• Make the application operating system (O/S) independent: It would be nice to not be so 
dependent on Windows. 

• Rewrite the application with parallel computing in mind: The smallest runs computed took 
over an hour, with larger runs taking far longer. There is much to be gained from a parallel 
processor environment. 

• Overhaul the application: The application used as a starting point for this research was poorly 
designed and buggy from the start. As each person has added their own features, the program 
has become more and more obfuscated. It would be worthwhile to completely redesign and 
rewrite the existing program with future extension in mind.  

 
3.2.5 Recommended Future Research Directions for Subimage Processing 
• Variable length transforms: Currently, the application evolves coefficients which adhere to 

the existing length of the base wavelet (e.g., the Daub4 wavelet transforms each have four 
coefficients–evolving off the Daub4 wavelet results in transforms which also have four 
coefficients). It is possible that exploring variable length transforms may further improve 
results. Modifications to the way in which the application stores, saves, and loads transforms 
should easily allow for this extension. 

• Integration of simultaneous evolution of forward transform coefficients with subimage 
training. 

• Co-evolution of U and V values: Currently only the Y values are used in the GA. Although 
the majority of the picture information is stored in the Y domain, expanding to also 
incorporate U and V may be fruitful. 

• Expand the search space: Presently the GA only searches in the transform space immediately 
adjacent to the base wavelet. Expanding the search could have very big ramifications, 
especially for the subimage enhancement and extraction problem, since one of the objectives 
of that problem is to maximize the MSE of the parent image. 

• Improve the GA: The GA, as it stands, is fairly simple. Including more advanced techniques 
such as niching, linear normalization, etc. could generate better results. 
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• Explore other wavelets: Only the Daub4 wavelet was used during subtask 3 due to time 
constraints. Further exploration using the other wavelets could be fruitful. 

• Test other quantization levels: These results indicate that the advantage over standard 
wavelets increases proportionately with quantization error. Unfortunately, only two nonzero 
quantization levels were used during this subtask. Tests utilizing additional levels of 
quantization error will be necessary to conclusively demonstrate the relationship between 
quantization error and the percentage improvement in MSE obtained via the GA. 

 
3.3 SUBTASK 3: Subimage Representativeness and Reconstructed Image Quality 
The objectives of this subtask were a) to determine how important representativeness is to GAs 
trained on selected images or subimages, and b) to experiment with how representativeness could 
be determined and measured: could a formula be discovered that would adequately distinguish 
representative from nonrepresentative images?   
 
Heather Koyuk completed subtask 3. 
 
3.3.1 The Issue of Representativeness  
Although reason indicates that the more representative an image is of another, the better a 
transform evolved on one will perform on the other, some sort of substantiation is necessary. The 
questions of how this representativeness can be measured, how important it actually is to the 
performance of an evolved GA, and how an evolved transform might be able to be trained to 
minimize (or, in some cases, maximize) the differences between images are all important to this 
project as a whole. 
 
3.3.2 Evolving Inverse Transforms on Subimages 
By using smaller subimages to evolve inverse transforms, the amount of time it takes to come up 
with notable results can be significantly decreased with little effect on results. Although work has 
been done on this before, further testing and validation of the results appeared necessary. 
 
3.3.3 Design of the Investigation 
A number of inverse transforms were evolved using representative and nonrepresentative 
subimages. These GAwavelets were then tested on each of the larger images and the results were 
analyzed in an attempt to determine how the originating subimage influenced the result on the 
larger images. At the same time, the results were examined for evidence that the subimage-trained 
transforms could decrease the MSE relative to standard wavelet-based techniques. 
 
3.3.4 Representativeness Formula 
The formula used to determine representativeness was the following, where stdev. means the 
standard deviation and Y, U, and V stand for the Y, U, and V values of the image respectively: 
 

4/)2)^(((4/)2)^(((2))^(( VStdevUStdevYStdev ++ .  (1) 
 
More weight was given to the Y values for a number of reasons: 
• The current GA evolves coefficients based on the Y values only. 
• One of the main advantages of YUV format is that chrominance (which consists of the U and 

V values) is much less important to data reconstruction than luminance (Y) is.  
• Except for the two color images used (barb.bmp and lenna.bmp), U and V values were 

basically nonexistent, with an average mean of -0.0165 and 0.0001, respectively, and an 
average standard deviation of 0.1125 and 0.1083, respectively (as opposed the average Y 
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mean of 128.8 and Y standard deviation of 48.7). Barb.bmp and lenna.bmp had an average U 
and V means of  -10.5 and 27.6 and average U and V standard deviations of 12.3 and 13.5).  

 
3.3.5 Procedures 
After saving 24 subimages produced by the GA Java code, the C++ code obtained from the PI 
was executed to train the coefficients for inverse transforms against each of the subimages. Due 
to time constraints as well as a desire to produce results comparable with those of Tinsley and 
Kettell, this experiment used the same settings that Tinsley and Kettell used: quantization of 64, 
population size M = 500, and maximum number of generations G = 500. After saving the evolved 
coefficients, each of the coefficient sets were tested against each of the 12 larger original images. 
Results were compiled into a number of data tables. The results were then analyzed for patterns 
of behavior. 
 
3.3.6 Representativeness Results and Confirmation of Tinsley’s and Kettell’s Results 
Not surprisingly, the coefficients evolved on the more representative subimages performed 
significantly better than the coefficients evolved on the nonrepresentative subimages. In fact, the 
nonrepresentative coefficients had an average percentage increase in MSE (relative to the Daub4 
wavelet) of 4.86 percent, whereas the representative coefficients had an average percentage 
reduction in MSE of 5.43 percent, for a greater than 10 percent difference between the two 
groups. Perhaps more significantly, the nonrepresentative coefficients had an average standard 
deviation (among the individual images) of 28, whereas the representative coefficients had an 
average standard deviation of 2.9. The averaged variance for the nonrepresentative coefficients 
was 1445, while the representative coefficients had an average variance of only 9 (see table 4, 
Appendix). This result preliminarily indicated that the standard deviation score initially used for 
this subtask produced a relatively reasonable measure of representativeness. This result also 
further substantiated Tinsley and Kettell’s preliminary findings, indicating that subimages could 
be used to train GAs, provided that the subimage used confirmed to certain standards. 
 
3.3.7 Overall Image Results  
What was unexpected was that the GAs generally performed well over the whole group of 
images: instead of diagonal effect where coefficients trained on subimages of an image performed 
better only on that particular image, the effect was rather linear, as shown in Figure 1 and 2. Upon 
examining the bitmap files that bred each of these coefficient sets (shown in Figure 3), a pattern 
began to emerge. Although specifically difficult to distinguish individually by the eye (e.g., what 
makes the GA from fruits_least better than the one from Susie_least), the images patently 
progress from clear, textured images to flat, blurry ones. Obviously, this is an important detail 
that should be further explored while working with the evolution of transform coefficients. This 
would also indicate that representativeness of the training image or subimage does not play as 
large a factor in coefficient success as was first assumed, and that some factor for clearness 
and/or texture is more important. Further research should be conducted in order to clearly identify 
and quantify this factor. 
 
3.3.8 Influence of Image Used for Testing  
Certain images also tended to respond better to the GAs overall (see Figure 3), but it was not as 
easy to distinguish what made those images easier for the GAs, due to their size and complexity. 
It may be worth investigating whether wavelet coefficients can be evolved that can reduce the 
MSE on the bad files.  
 
3.3.9 Conclusions, Subtask 3 
Although the initial results for subtask 3 seem to indicate that representativeness is not as 
important a factor as initially thought, these tests did reveal that certain subimages might provide 
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better results than others. Such an effect should be explored further. Many more tests should be 
run to confirm these initial findings, with varying factors such as changing the fitness function in 
the Java subimage selection code, testing the evolved coefficient sets on completely different 
images, and running the GA for longer lengths of time. These tests did reconfirm Tinsley and 
Kettell’s previous results with the evolution of coefficients on subimages of smaller size, 
provided that the subimage used to train the GA confirmed to certain standards. 
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Figure 1. Percentage Improvement by Image 

 

Subimage

ai
rp

la
ne

_l
ea

st

pa
rk

_l
ea

st

fr
ui

ts
_l

ea
st

bo
at

_l
ea

st

le
nn

a_
le

as
t

co
up

le
_l

ea
st

ze
ld

a_
le

as
t

pe
pp

er
s_

le
as

t

su
si

e_
le

as
t

go
ld

hi
ll_

le
as

t

ba
rb

_l
ea

st

ba
bo

on
_l

ea
st

ze
ld

a_
m

os
t

su
si

e_
m

os
t

ba
bo

on
_m

os
t

co
up

le
_m

os
t

ai
rp

la
ne

_m
os

t

ba
rb

_m
os

t

go
ld

hi
ll_

m
os

t

le
nn

a_
m

os
t

fr
ui

ts
_m

os
t

pe
pp

er
s_

m
os

t

bo
at

_m
os

t

pa
rk

_m
os

t

-30

-25

-20

-15

-10

-5

0

5

10

15

Percent Improvement

Image

Subimage

 
 

Figure 2. Percentage Improvement by Subimage 
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Figure 3. Subimages Ordered by the success of Their Evolved GA 
(left to right, top to bottom) 
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3.4 SUBTASK 4: Evolving Matched Forward and Inverse Transform Pairs 
The purpose of subtask 4 was to establish a methodology for evolving matched forward and 
inverse transform pairs for improved image compression and reconstruction. 
 
Brendan Babb and Steven Becke completed subtask 4. 
 
3.4.1 Discussion 
The first step in this process was to modify software previously developed by the PI to 
simultaneously evolve coefficients for both the forward and inverse transforms. Initial attempts to 
minimize the MSE produced by the evolved transforms produced good results, improving the 
MSE in comparison to the performance of the standard D4 wavelet by over 30 percent. Taking 
the coefficients evolved during one run and plugging them back into the program as the starting 
coefficients resulted in up to a 95 percent reduction in MSE compared with the standard wavelet 
MSE. 
 
At this point it became evident that something must be wrong because these initial results were 
simply too good.  The original fitness function focused entirely on improving MSE. Since the 
new approach simultaneously evolved both the forward and inverse coefficients, it soon became 
obvious that the GA was merely evolving a forward transform that increased the FS in order to 
offset the effects of the quantization step: in effect, the GA learned to make the Y values larger so 
that all the detail would be retained when the Y values were quantized. 
 
To correct this error, both FS and MSE were integrated into the fitness function used by the GA. 
The tradeoff between these two conflicting objectives defines in a Pareto optimal front that must 
be handled correctly by the fitness function. Since the GA was storing the Y values after 
quantization for the compressed file, the fitness function was modified to compute the sum of the 
log base 2 of the Y values, as this should correspond to the number of bits to store each Y value. 
To avoid taking the log of 0, this code was modified as follows: 
 

if (Y == 0) 
Y length = Y length + 1; 

else if (Y > 1)  
Y length = Y length + log 2 (Y); 
 

This approach proved to be erroneous due to the fact that there were actually negative Y values. 
Thus, modifications were made to include bits for sign and also to take the absolute value of Y. 
This led to improved coefficients, but when the coefficients were plugged back into the original 
GA, the expected FS deviated from the actual FS.  
 
The final modification was to include a call to Encode Frame. This call was avoided initially as it 
was thought to add too much time to the GA to prepare a buffer for saving the file each time. 
When it was added it did give accurate FS calculations, and also slowed down the speed of 
running the GA. Currently, the GA only does an Encode Frame operation on the Y component, so 
that the function only has to be called once in the GA. The Encode Frame of U and V are 
assumed to be the same each time and add 104 bytes to the actual FS. 
 
Testing revealed a discrepancy in the MSE improvements based on the GA and the actual MSE. 
This error can be attributed to the fact the GA minimizes MSE for the Y values and not the final 
red/green/black (RGB) values. The difference is only 2 to 3 percent lower in the MSE 
improvement. This error could be rectified in future versions by converting back to RGB and 
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computing MSE, but this solution would slow down the GA and a mathematical approximation 
could probably be found. 
 
Another possible way to speed up the program would be to use a mathematical approximation for 
Encode Frame that would give an accurate FS. 
 
The initial fitness function was using of the form a * MSE ratio + b* FS ratio. It was challenging 
to pick the right combination of  a and b. Depending on their values, the evolved coefficients 
might have a good MSE gain but also grow in FS. To compensate for this effect, the GA was 
modified to control the maximum FS allowed during each run and see what improvements in 
MSE could be obtained for the specified maximum FS. 
 
The image Couple, the D4 wavelet coefficients, and a quantization step of 64 were used for most 
of the tests performed during this research. Trail-and-error revealed two important metrics:  
 
• MSE Ratio = 100 * MSE / (the original MSE for couple with quantization 64 and the D4 

coefficients). 
• FS Ratio = 100 * FS / (original FS for couple with quantization 64 and the D4 coefficients). 
 
Many combinations of a* MSE ratio + b * FS ratio were tried as a measure of fitness. 
Coefficients evolved during one run of the GA could be used as a starting point for a subsequent 
run, i.e., it was possible to plug these coefficients back into the program, change a and b slightly, 
and get better results. It was almost a tuning of sorts: one could start with a solution that was 
approximately 100 percent FS ratio and 85 percent MSE ratio, modify the a and b values, rerun 
the program, and end up with a solution with approximately a 70 percent MSE ratio but 108 
percent FS ratio. 
 
In order to look for a particular FS percentage, the fitness function was altered to take the 
absolute value of the difference from the goal FS ratio, add it to 1, and square the result. Then this 
value was multiplied by c. For example, if the goal FS ratio was 90 percent, then the fitness could 
be calculated as 
 

MSE ratio + 400 * (1+ abs(.90 - (FS/original FS)))^2         (2) 
 
The effect of squaring the difference was to encourage the GA to zero in on the desired FS.  
 
From repeatedly doing runs of 200 population and 500 generations and taking the coefficients and 
plugging them back into the program as the starting coefficients, runs of over 3,000 generations 
could be completed.  This method introduces slight bias due to the fact that the GA started with 
the best coefficients from the previous run, but the program randomly perturbs the initial 
population of best coefficient copies.  
 
3.4.2 Results, Subtask 4 
Using the couple image with a quantization step of 64, the enhanced GA written for subtask 4 
produced a set of coefficients describing a matched forward and inverse transform pair that 
produced a 22 percent reduction in MSE in comparison to the performance of Daub4 coefficients 
and the same FS. Figure 4 shows couple compressed and reconstructed by the Daub4 forward and 
inverse transform, while Figure 5 shows the same image compressed and reconstructed via the 
evolved transform pair. Improvements in shading and contrast are visible to the naked eye.  
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Figure 4. Couple with Quantization Step 64: Daub4 Transform 
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Figure 5. Couple with Quantization Step 64: Evolved Transform (100 Percent FS) 
 
These coefficients were subsequently tested against each of the images in a test suite. The average 
over all the images was a 20 percent improvement and the FS was less than 100 percent on 
average. 
 
Other FS ratios ranging from 90 percent to 110 percent of the wavelet-compressed FS were tried. 
The results of these tests revealed a trend line that fits the values fairly well. These tests evolved 
from the same original coefficients (Daub4) and used the couple image each time, so that might 
have biased the trend line, but there appear to be solutions around the area that correspond to a 
certain decrease in MSE for a specified FS. Figure 6 shows couple with the FS constraint relaxed 
to 110 percent of the wavelet-compressed FS. The enhancement in image quality is clearly visible 
to the naked eye. Figure 7 illustrates the results of evolving matched transform pairs using 
specific maximum FS values. 
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Figure 6. Couple with Quantization Step 64: Transform Evolved with Relaxed FS 
Constraint (110 Percent of Daub4-Compressed FS) 
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MSE vs File Size

0.525

0.625

0.725

0.825

0.925

1.025

0.900 0.920 0.940 0.960 0.980 1.000 1.020 1.040 1.060 1.080

Filesize Ratio 
(Filesize(this)/Filesize(D4,Q64))

M
SE

 R
at

io
 

(M
SE

(th
is

)/M
SE

(D
4,

Q
64

))

Evolved co-efficients Q64
Standard D4 Q64

 
Figure 7. Pareto Optimal Front Illustrating the Tradeoff between FS and MSE Reduction 

 
Next, these evolved coefficients were tested to determine whether they would produce generally 
good results when used to transform other images. The results of these tests are tabulated in Table 
5.  
 

Table 5. Test Results for Forward and Inverse Transform Pairs 
Evolved Using the Couple Image 

 

  

FS 
(using 
Daub4) 

MSE 
(using 
Daub4) 

FS 
(evolved)

MSE 
(evolved) 

FS as % 
of Daub4 
FS 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

Airplane 48125 112.4558 47993 88.973 99.726 79.119 20.881
Baboon 48536 279.5612 49758 230.606 102.518 82.488 17.512
Barb 49116 307.6155 49392 257.087 100.562 83.574 16.426
Boat 44429 158.9024 44349 134.718 99.820 84.781 15.219
Couple 44795 155.9632 44792 121.281 99.993 77.763 22.237
Fruits 48640 115.8036 48414 88.458 99.535 76.386 23.614
Goldhill 42814 135.7847 42351 104.912 98.919 77.263 22.737
Lenna 56519 177.5059 56245 137.575 99.515 77.505 22.495
Park 42324 168.9597 42020 133.664 99.282 79.110 20.890
Peppers 39843 121.2649 39683 97.813 99.598 80.661 19.339
Susie 45859 132.5596 45924 106.596 100.142 80.414 19.586
Zelda 38257 134.5674 37903 106.003 99.075 78.773 21.227
        
    Averages 99.89036 79.81961 20.1803875
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Coefficients evolved exclusively against couple over approximately 4,000 generations were 
tested against other images. At quantization 64, they produced an average improvement of 20 
percent for MSE while maintaining compressed FS at an average of 99.9 percent when compared 
to the standard Daub4 transform. There were some instances where FS was slightly larger, the 
largest being 102.52 percent of the Daub4 compressed file, but on average it appears likely that 
this will even out. The lowest improvement in MSE over the Daub4 transform was 15 percent 
against the boat image, while the highest improvement was 23 percent for the fruits image. (Note 
that this improvement was even greater than for couple.)  Thus, the highly evolved coefficients 
proved quite effective at giving improved MSE when transforming other images at quantization 
64 while keeping FS in check. 
 
Figure 8 depicts the fruits image compressed and reconstructed using the Daub4 transforms with 
a quantization step of 64, while Figure 9 shows the same image processed by the evolved 
transform pair. Improvements in texture and clarity are visible to the naked eye. 
 

 
Figure 8. Fruits Compressed and Reconstructed via the Daub4 Transform: 

Quantization = 64 
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Figure 9. Fruits Compressed and Reconstructed via Transforms Evolved Against 
Couple with Identical FS: Quantization = 64 

 
Figure 10 shows fruits after compression and reconstruction using transforms evolved against 
couple with a quantization step of 64 and a relaxed FS constraint of 110 percent. A considerable 
amount of additional detail is clearly evident in this image when compared to either the wavelet 
reconstructed image (Figure 8) or the evolved transform reconstructed image with the 100 percent 
FS constraint (Figure 9). 
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Figure 10.  Fruits Compressed and Reconstructed by a Transform Evolved Against 

Fruits and a Relaxed 110 Percent FS Constraint 
 
 

As a second example of the power of the GA to dramatically improve MSE while increasing FS 
by only 10 percent, consider Figures 11 and 12. Figure 11 show boats after compression and 
reconstruction by the Daub4 wavelet with a quantization step of 64, while Figure 12 shows the 
same image reconstructed via the transform evolved against couple with the same quantization 
step and a relaxed FS constraint of 110 percent.  The latter image reduces MSE in comparison to 
the former by a factor of 50.0 percent. 
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Figure 11. Boat Compressed and Reconstructed by the Daub4 Wavelet: 
Quantization = 64 
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Figure 12. Boat Compressed and Reconstructed by Evolved Transforms: 

Quantization = 64 
 

Coefficients were also evolved against Baboon, and then Susie, to determine whether the 
coefficients evolved against other images would also provide good results when applied to other 
images. Although both of these training runs completed a relatively low number of generations, 
the results seemed to show good generalization for these coefficients as well. Evolving against 
Baboon over 500 generations (Table 6) produced coefficients capable of a 6.65 percent 
improvement in MSE over the Daub4 wavelet at quantization 64. When applied to other test 
images, these coefficients produced an average improvement of 6.64  percent in MSE. The lowest 
improvement was 4.9 percent and the highest was 7.4 percent. Evolving against Susie over 500 
generations (Table 7) yielded coefficients capable of an 8 percent improvement in MSE over 
Daub4 at quantization 64. When applied to other test images, these coefficients produced an 
average improvement of 6.96 percent in MSE. The lowest improvement was 5.4 percent, and the 
highest was 8.6 percent.  
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Table 6. Generalization Properties of Coefficients Evolved Using Baboon 
 

  

FS 
(using 
Daub4) 

MSE 
(using 
Daub4) 

FS 
(evolved)

MSE 
(evolved) 

FS as % 
of Daub4 
FS 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

airplane 48125 112.4558 48099 104.6 99.94597 93.01432 6.985677929
baboon 48536 279.5612 48531 260.97 99.9897 93.34986 6.650135999
Boat 44429 158.9024 44399 150.9 99.93248 94.96395 5.036047284
Fruits 48640 115.8036 48588 107.26 99.89309 92.62234 7.377663561
Lenna 56519 177.5059 56465 164.33 99.90446 92.5772 7.422795524
peppers 39843 121.2649 39803 115.22 99.89961 95.01513 4.984871962
Zelda 38257 134.5674 38211 125.42 99.87976 93.20237 6.797634494
        
    Averages 99.92072 93.53502 6.46497525

 
Table 7. Generalization Properties of Coefficients Evolved Using Susie 

 

  

FS 
(using 
Daub4) 

MSE 
(using 
Daub4) 

FS 
(evolved)

MSE 
(evolved) 

FS as % 
of Daub4 
FS 

MSE as 
% of 
Daub4 
MSE 

Percentage 
Improvement 
of MSE 

Baboon 48536 279.5612 48545 263.59 100.0185 94.28705 5.712953014
Barb 49116 307.6155 49126 291 100.0204 94.59861 5.401385821
Couple 44795 155.9632 44768 144.87 99.93973 92.8873 7.11270351
Goldhill 42814 135.7847 42883 124.09 100.1612 91.38732 8.612678748
Park 42324 168.9597 42394 157.26 100.1654 93.07545 6.924550647
Susie 45859 132.5596 45854 121.95 99.9891 91.99635 8.003645153
        
    Averages 100.049 93.03868 6.961319482

 
3.4.3 Future Directions 
Although most of the test runs for subtask 4 were seeded with the Daub4 coefficients, a run 
seeded with random coefficients for population 200 over 500 generations (values constrained 
between -1 and 1) evolved down to 130 percent of MSE and to the same FS as the standard 
Daub4 transform, leading us to believe it is viable to have more explorative searches of the search 
space that may find more effective coefficients that are not located so close to the Daub4 
coefficients. 
 
Integration of the subimage training methodology of subtask 3 into the software of subtask 4 
would result in the creation of a software tool that was capable of much greater MSE reduction 
for a specified FS, while allowing each training run to complete much more rapidly. Future 
research will greatly benefit from the combination of these two approaches. 
 
Finally, visible differences between images transformed and reconstructed by wavelets vs. 
evolved transforms are not as obvious as the MSE measure would seem to indicate. Use of a 
different fitness measure (such as the Q metric) may allow the GA to produce results that are 
more apparent to the human eye. 
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3.5 SUBTASK 5: Evolving New Coefficients for JPEG 2000 Image Compression and 
Reconstruction 

 
For the fifth subtask identified for this research, the JPEG 2000 Optimizer was used in an attempt 
to reduce the error incurred during lossy compression of images by the JPEG 2000 compression 
scheme. 
 
Earl Lamson III completed subtask 5. 

3.5.1 Implementation 
The Jasper image compression library is used for baseline JPEG 2000 compression. The Jasper 
library uses the 9/7 wavelet transform. Error reduction is accomplished by optimizing the forward 
and inverse transforms used during the compression and reconstruction processes. The software 
developed for subtask 5 uses a GA to simultaneously evolve two sets of coefficients: one set for 
image compression, and another set for image reconstruction (i.e., each chromosome evolved by 
the GA contains separate forward and inverse transform coefficients). The application allows the 
user to customize the optimization process. 

3.5.2 GA Details 
1. Generation 

The chromosomes are generated by multiplying each of the coefficients by a random value 
whose distribution is centered on one and maximum deviation is specified on the command 
line. 

2. Selection 
Three types of selection operators are included. The selection algorithm to be used is 
specified on the command line using the ‘c’ parameter. 
a. Fitness proportionate selection (roulette wheel). This operator is selected by using the 

command line parameter ‘c=0’. 
b. Tournament selection where tournament size is specified on the command line. 

Tournament selection is specified with ‘c=1’. Tournament size is specified by 
‘T=<tournament size>’. 

c. Linear normalization selection. This operator is specified by using the command line 
parameter ‘c=2’. 

3. Crossover 
The chromosome is represented by an array of doubles encapsulated in a class. Crossover on 
the chromosomes is performed on the array of doubles and not on the bits. Crossover weight 
is specified with the ‘x’ parameter. 

4. Mutation 
Mutation is performed in the same way as generation, accept that only one allele (double) is 
multiplied by the mutation operator. Mutation weight is specified with the ‘m’ parameter. 

5. Reproduction 
Standard reproduction is used. Reproduction weight is specified with the ‘r’ parameter. 

6. Evaluation 
Evaluation of a chromosome is done by performing both the forward (compression) and 
inverse (decompression) transforms on the source image and comparing the results with the 
original image using the MSE metric. The wavelet coefficients are injected into the Jasper 
software before both compression and decompression. 

3.5.3 Results, Subtask 5 
Applying the program to a set of test images yielded the following results: 
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3.5.3.1 Run 1 
Seed: 34 
Population Size: 1,000 
Generation and Mutation Deviation: 0.01 
JPEG 2000 Quality: 0.025 (40:1) 
Crossover Weight: 96 percent 
Mutation Weight: 3 percent 
Reproduction Weight: 1 percent 
Selection: Linear Normalization 
Source Image: lenna.bmp (512- by 512-pixel color) 
Age: 20 generations. 
 
Results:  
File Reference Evolved Difference Percent 
lenna.bmp 29.6566 29.5345 0.1221 0.41 
          
airplane.bmp 10.4862 10.6011 -0.1149 -1.10 
baboon.bmp 148.977 150.287 -1.31 -0.88 
barb.bmp 47.4956 47.1413 0.3543 0.75 
boat.bmp 18.1036 18.1843 -0.0807 -0.45 
couple.bmp 27.7368 27.8329 -0.0961 -0.35 
fruits.bmp 12.2725 12.2995 -0.027 -0.22 
goldhill.bmp 27.1412 27.1147 0.0265 0.10 
park.bmp 43.7253 43.7158 0.0095 0.02 
peppers.bmp 13.8595 13.8335 0.026 0.19 
susie.bmp 23.0702 22.8276 0.2426 1.05 
zelda.bmp 6.27928 6.26663 0.01265 0.20 

 
Discussion: This test run confirmed the working order of the application. Although progress was 
occasionally observed, there were not enough generations to draw any real conclusions. Applying 
the results to the other test images didn’t seem to have any useful or predictable effect as it 
improves some and impairs others. 
 
3.5.3.2 Run 2 
Seed: 34 
Population Size: 500 
Generation and Mutation Deviation: 0.1 
JPEG 2000 Quality: 0.0125 (80:1) 
Crossover Weight: 90 percent 
Mutation Weight: 5 percent 
Reproduction Weight: 5 percent 
Selection: Linear Normalization 
Source Image: lenna_div2.bmp (256- by 256-pixel color) 
Age: 300 generations. 
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Results:  
File Reference Evolved Difference Percent 
lenna_div2.bmp 122.196 119.908 2.288 1.87 
          
airplane_div2.bmp 118.986 111.079 7.907 6.65 
baboon_div2.bmp 269.712 259.828 9.884 3.66 
barb_div2.bmp 143.031 144.12 -1.089 -0.76 
boat_div2.bmp 114.149 114.988 -0.839 -0.74 
couple_div2.bmp 131.037 131.795 -0.758 -0.58 
fruits_div2.bmp 72.7055 72.1221 0.5834 0.80 
goldhill_div2.bmp 85.3961 82.7413 2.6548 3.11 
park_div2.bmp 200.942 207.036 -6.094 -3.03 
peppers_div2.bmp 70.449 71.8374 -1.3884 -1.97 
susie_div2.bmp 76.9911 73.1166 3.8745 5.03 
zelda_div2.bmp 26.7705 26.2331 0.5374 2.01 

 
To attempt to compensate for the slow speed of the computer on which this was run, the 
resolution of the test images was reduced. More improvement is made on this run over the first, 
as is to be expected with the greater number of generations. The improvement is still too 
insignificant to be visible. Applying the evolved coefficients to the rest of the images again tends 
to have unpredictable results. 
 
3.5.3.3 Run 3 
Seed: 34 
Population Size: 1,000 
Generation and Mutation Deviation: 0.01 
JPEG 2000 Quality: 0.025 (40:1) 
Crossover Weight: 96 percent 
Mutation Weight: 3 percent 
Reproduction Weight: 1 percent 
Selection: Linear Normalization 
Source Image: goldhill.bmp (512- by 512-pixel grey) 
Age: 325 generations. 
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Results:  
File Reference Evolved Difference Percent 
goldhill.bmp 27.1412 26.7477 0.3935 1.45 
          
airplane.bmp 10.4862 10.7184 -0.2322 -2.21 
baboon.bmp 148.977 151.117 -2.14 -1.44 
barb.bmp 47.4956 47.0334 0.4622 0.97 
boat.bmp 18.1036 17.9019 0.2017 1.11 
couple.bmp 27.7368 27.9996 -0.2628 -0.95 
fruits.bmp 12.2725 12.4802 -0.2077 -1.69 
lenna.bmp 29.6566 29.5414 0.1152 0.39 
park.bmp 43.7253 43.5204 0.2049 0.47 
peppers.bmp 13.9767 13.9409 0.0358 0.26 
susie.bmp 23.0702 22.8128 0.2574 1.12 
zelda.bmp 6.27928 6.27881 0.00047 0.01 

 
This run was the longest of the four, although it remains quite young in the scope of a GA. The 
decreased frequency of improvement in later generations discouraged spending more time aging 
this run. Unfortunately, very small improvement of the already small error metric was observed. 
The initially high quality images led to the change in parameters for the last run. 
 
3.5.3.4 Run 4 
Seed: 34 
Population Size: 500 
Generation and Mutation Deviation: 0.01 
JPEG 2000 Quality: 0.0125 (80:1) 
Crossover Weight: 90 percent 
Mutation Weight: 5 percent 
Reproduction Weight: 5 percent 
Selection: Linear Normalization 
Source Image: goldhill.bmp (512- by 512-pixel grey) 
Age: 250 generations. 
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Results:  
File Reference Evolved Difference Percent 
goldhill.bmp 52.2814 51.338 0.9434 1.80 
          
airplane.bmp 29.2861 28.8681 0.418 1.43 
baboon.bmp 285.045 285.939 -0.894 -0.31 
barb.bmp 105.492 105.725 -0.233 -0.22 
boat.bmp 45.2636 44.4933 0.7703 1.70 
couple.bmp 63.7842 63.8161 -0.0319 -0.05 
fruits.bmp 26.46 26.8051 -0.3451 -1.30 
lenna.bmp 49.2191 49.2934 -0.0743 -0.15 
park.bmp 84.2667 83.7834 0.4833 0.57 
peppers.bmp 24.3578 24.4653 -0.1075 -0.44 
susie.bmp 46.2359 45.8857 0.3502 0.76 
zelda.bmp 10.1934 10.3685 -0.1751 -1.72 

 
This last run was an attempt to improve upon the results of run 3 by increasing the compression 
rate of the Jasper library by a factor of 2. The increase compression does indeed lead to higher 
error levels; unfortunately, the improvement of this higher error level is again insignificant. The 
population size was reduced due to the appearance of many copies of the same chromosome in 
the generations of run 3. The changes don’t seem to help. These results indicate that the 
performance improvement over the reference wavelet on images remains chaotic. With both runs 
3 and 4 being trained on the same image, it was hoped that the evolved coefficients would have 
similar effects when applied to the other images, but this does not appear to be the case. 

3.5.4 Conclusions, Subtask 5 
The results of subtask 5 were inconclusive. Images produced the transforms evolved during this 
subtask do not appear to have improved upon the JPEG 2000 standard in any visible sense. From 
a purely numerical perspective, the GA was occasionally successful in reducing the error 
introduced by compression, although the metric used for measuring the error may not reflect the 
amount of change made by the evolved coefficients. 

3.5.5 Continuation 
Future research should concentrate on the following improvements: 
1. Error metrics 

Incorporate other error metrics, as well as the ability to select among them. Also analysis of 
the error in the images would be nice, for instance a histogram showing the distribution of per 
pixel error values. It is suspected that improvements are being made by reducing a few large 
error values in favor of many smaller error values. 

2. Fitness hash optimization 
Much redundancy in the population causes the same chromosome to be repeatedly evaluated. 
Instead of straight evaluation of each chromosome, the fitness for each unique chromosome 
encountered could be stored in a hash table. The hash table could then be checked for 
duplicates before evaluation, saving a possibly very large amount of time for larger 
populations. Of course, this method would cost the memory of storing this table of fitness 
values, but the memory footprint of the current program is fairly small in comparison to the 
memory available in today’s computers. 
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3. User interface 

Either a graphical user interface (GUI) or a more robust text user interface would make 
working with the runs much easier. This change would require a redesign of some of the 
object interfaces. Of course, this re-factoring probably needs to be done regardless, as many 
afterthought features have revealed weakness in the application’s design. 

4. Specialized reproduction (elitism) 
Elitism would keep the run’s best chromosome in the gene pool and could increase the rate of 
convergence. 

5. Platform independence 
Originally, the application was designed to run on *nix machines in a clustered or massively 
parallel computing environment. Although the current code does compile and run on *nix 
machines, segmentation faults frequently occur after a few generations, likely due to a 
memory issue. Future efforts should focus upon debugging the application. 
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4. CONCLUSIONS 
 
This research project resulted in several important contributions to the state of the art in the image 
processing field. 
 
A. This study demonstrated that a GA is capable of evolving coefficients representing inverse 

transforms that outperform wavelets on the task of minimizing the MSE in reconstructed 
images under conditions subject to quantization. 

B. The results of subtask 1 showed that inverse transforms evolved using a single representative 
image also outperformed wavelets when subsequently tested against other images. 

C. Subtask 2 established a methodology for using one or more representative subimages to 
evolve coefficients representing optimized inverse transforms, and showed that the evolved 
transforms also outperformed wavelets in terms of MSE reduction in reconstructed images. 
The results summarized above demonstrated that the use of representative subimages to 
evolve inverse transform coefficients greatly increased the speed of the GA, allowing the use 
of much larger values for GA control parameters M (population size) and G (number of 
generations executed). 

D. Subtask 2 also investigated several approaches to the problem of evolving an inverse 
transform capable of highlighting the existence of a selected subimage in a larger parent 
image. One approach that was attempted was to create a training population that consisted of 
both the selected subimage and the parent image, and then utilize a fitness function that 
simultaneously encouraged high-fidelity reconstruction of the subimage and poor 
reconstruction of the parent image. Unfortunately, the transforms developed during subtask 2 
were incapable of using simple multiobjective fitness criteria to solve this problem. 

E. Subtask 3 attempted to discover the properties of subimages that make them more or less 
suitable for evolving an inverse transform capable of performing well over all of the test 
images. A representativeness measure was generally successful in predicting which 
subimages could be used to evolve a better inverse transform. In addition, the results of 
subtask 3 suggested that other factors, such as the clarity and texture of the subimage, may be 
a more reliable measure for selecting the best subimage for training. 

F. During subtask 4, the previously developed model was extended to allow the simultaneous 
evolution of coefficients representing matched transform and inverse transform pairs. This 
enhancement over the previous model (which supported only the evolution of inverse 
transform coefficients) resulted in a much higher degree of MSE reduction. According to the 
MSE metric, the quality of images transformed and subsequently reconstructed by evolved 
transform pairs was significantly better than the quality of images transformed by a wavelet 
and subsequently reconstructed by an evolved inverse transform, which in turn was better 
than the quality of images transformed and reconstructed using standard wavelets under 
conditions subject to quantization error.   
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5. RECOMMENDATIONS FOR FUTURE RESEARCH 
 
Based upon the outcome of this research project, the PI recommends future research to be 
conducted into the following issues: 
 
A. The outcome of subtask 4 clearly demonstrated the increased power of simultaneously 

evolving matched forward and inverse transform pairs for high-fidelity image compression 
and reconstruction under conditions subject to quantization error. To dramatically increase 
both the speed of the evolutionary process and the size of runs that could be completed, the 
subimage training techniques identified during subtask 2 should be integrated with the 
approach taken during subtask 4. The resulting software may be capable of achieving far 
more impressive results than has been observed to date. 

B. The outcome of subtask 3 demonstrated the need to investigate the properties of subimages 
that make them more or less useful to the GA for evolving optimized transform coefficients. 
The resulting subimage selection criterion could then be integrated directly into the GA, 
allowing it to automatically identify the most suitable subimages for training. 

C. It is possible that the integration of the above methodologies will result in a GA capable to 
evolving better coefficients than are currently utilized by the JPEG 2000 standard. 

D. The use of other fitness measures besides MSE (such as the Q metric) may allow the GA to 
evolve forward and inverse transform pairs that produce reconstructed images that are much 
more appealing to the human eye than images produced by standard wavelets. 

E. To date, generation 0 used by each GA run has been populated with randomly mutated copies 
of coefficients describing a specified standard wavelet. Since mutation occurs infrequently 
and consists of multiplying a given coefficient by a factor chosen from a narrow Gaussian 
distribution around 1.0, virtually all of the individuals in generation 0 of each run existed in 
the transform space immediately adjacent to the wavelet. Furthermore, all of the transforms 
evolved by the GA developed for this study have utilized a structure that is identical to a 
selected wavelet. (For most of the examples described in this report, the Daub4 wavelet was 
used to seed the initial population of transforms; thus, all of the forward or inverse transforms 
from each generation of each GA run were comprised of exactly four g and four h 
coefficients.) However, a growing amount of empirical evidence suggests that transforms 
radically different from wavelets in both structure and composition may be better at image 
compression and reconstruction, offsetting detrimental effects such as quantization more 
effectively. Future research should investigate the use of populations of evolved transforms 
that vary in both shape and composition. 

F. The full impact of this research will not be appreciated by the signal and image processing 
community until its successful application to a real-world system. Future efforts should focus 
upon the identification of systems that will benefit the most from this GA-based approach.  
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